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Critical droplets in metastable states of probabilistic cellular automata
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We consider the problem of metastability in a probabilistic cellular automaton~PCA! with a parallel updat-
ing rule that is reversible with respect to a Gibbs measure. The dynamical rules contain two parametersb and
h that resemble, but are not identical to, the inverse temperature and external magnetic field in a ferromagnetic
Ising model; in particular, the phase diagram of the system has two stable phases whenb is large enough and
h is zero, and a unique phase whenh is nonzero. When the system evolves, at small positive values ofh, from
an initial state with all spins down, the PCA dynamics give rise to a transition from a metastable to a stable
phase when a droplet of the favored1 phase inside the metastable2 phase reaches a critical size. We give
heuristic arguments to estimate the critical size in the limit of zero ‘‘temperature’’ (b→`), as well as
estimates of the time required for the formation of such a droplet in a finite system. Monte Carlo simulations
give results in good agreement with the theoretical predictions.@S1063-651X~99!04304-4#

PACS number~s!: 64.60.My, 64.60.Qb
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I. INTRODUCTION

Metastable states are ubiquitous in systems underg
first-order phase transitions. During their lifetime~which can
be very long indeed! these states are practically indisti
guishable from equilibrium states. Nevertheless, they can
be described in the framework of the equilibrium Gibbsi
formalism@1–3#. Their analysis in terms of dynamical mod
els has led to a deeper understanding of metastability
providing detailed descriptions of the ‘‘escape routes’’ fro
metastable to stable states in certain idealized limiting si
tions.

Following earlier work on systems with long range inte
actions@4,1#, the pathwise approach to metastability was
troduced in@5#. It was then used in@6# and @7# to study
rigorously the escape from metastability in the Ising mo
with nearest-neighbor interactions and a small external m
netic field, evolving via metropolis Glauber dynamics in
finite periodic domain, in the limit of temperature going
zero. The effect of the boundary conditions on the exit p
from the metastable phase was analyzed in@8#. Metastability
for spin systems with different interactions was investiga
in @9# and in @10# the problem was considered in a mo
general context.

The case of finite temperature, infinite volume and ext
nal magnetic field going to zero was studied in@11#; this
situation, very interesting from the physical point of view,
mathematically much more complicated than the ze
temperature limit. The finite-temperature case also has b
studied by means of Monte Carlo simulations~see, e.g.,@12#!
and by transfer-matrix methods@13#; a clear discussion o
these results can be found in@14#.

In all the above works~except for that of Penrose
Lebowitz @1# dealing with deterministic continuum system!
the spin systems evolve according to a stochastic continu
time or serial dynamics, for which at most one spin of t
system is updated at any time. In this paper we investig
metastable behavior in systems with parallel evolution, i
PRE 591063-651X/99/59~4!/3935~7!/$15.00
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in which all the spins of the system are updated simu
neously, at integer timest51,2,3, . . . . In particular, we are
interested in finding how the escape time and escape
from the metastable phase are influenced by the parallel
namics. A natural setting for this question is that of proba
listic cellular automata~PCA!, specifically those whose sta
tionary measures are Gibbs states of Ising models with s
range interactions.

PCA were first studied in the Soviet literature of the ea
seventies@15# and since then have been applied in ma
different contexts; in particular, their connections with stat
tical mechanics were investigated in@16,17#. In this paper we
will consider a PCA for which the dynamics depends on t
parameters,b and h, and which has the property that it
stationary states are Gibbs measures for a certain Ha
tonianH(b,h). Hereb plays the role of an inverse temper
ture andh that of an external magnetic field, but the couplin
constants inH depend onb in a complicated way; in particu

lar, H(b,h)ÞbH̃(h). As in the standard Ising model, w
have that whenb is large enough andh is zero there exist
two different stationary Gibbs measures for the PCA, ch
acterized by nonzero average magnetizations6m* , while
for hÞ0 there is a unique stable phase. We then pose
usual question of metastability: if at largeb the system is
prepared in the minus~plus! phase and the magnetic field
chosen positive~negative! and small, how does the syste
reach the stable phase? For definiteness we will always
sider the escape from an initial all minus phase.

In spin models with continuous time dynamics, an impo
tant role in this transition is played by thestable configura-
tions @6–9#, which are fixed points of the evolution in th
limit of zero temperature. For example, a rectangle of plu
of width greater than one inside a sea of minuses is a st
configuration for the nearest-neighbor Ising model with
small positive external field. The tendency of such a re
angle to grow or to shrink by the repeated addition or loss
single sites, as a function of its size, yields the behavior
3935 ©1999 The American Physical Society
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3936 PRE 59BIGELIS, CIRILLO, LEBOWITZ, AND SPEER
the exit from the metastable state. In the PCA discussed
low all configurations are accessible at a single updat
Nevertheless, we will argue that, for largeb, the only con-
figurations relevant for the description of the exit from t
metastable phase are those in which the plus phase is in
well separated rectangles in the minus sea. We then dis
quantitatively the growth and shrinkage of such droplets
compare our theoretical prediction with results of Mon
Carlo simulations.

In Sec. II we define our model and show that it undergo
a phase transition at low temperature, and in Sec. III desc
the specific model on which we will focus in the balance
the paper. We discuss our heuristics on the critical beha
of droplets in Sec. IV, and compare theoretical and Mo
Carlo results in Sec. V. Section VI is devoted to some b
conclusions.

II. DESCRIPTION OF THE GENERAL PCA MODEL

Let L be ad-dimensional torus containingLd lattice sites,
i.e., L,Zd is a cube containingLd points and having peri-
odic boundary conditions. At each sitexPL there is spin
variables(x)561; the space$1,21%L of configurations is
denoted byV.

To define the dynamics of the model we introduce
discrete time variablen50,1, . . . anddenote bysn the sys-
tem configuration at timen. All the spins are updated simu
taneously and independently at every unit time; the con
tional probability that the spin at sitex takes valuet at time
n, given the configuration at timen21, is

Prob@sn~x!5tusn21#[px~tusn21!

5
1

2 F11t tanhbS (
yPL

K~x2y!sn21~y!1hD G .
~1!

Thus the time evolution is a Markov chain onV with non-
zero transition probabilitiesPL(hus) given by

PL~hus!5 )
xPL

px„h~x!us…, ;s,hPV. ~2!

The coupling is of finite range@K(z)50 if uzu.z0 , with
z0,L and typicallyz0!L] and the coupling constantsK(z)
will be held fixed throughout our discussion. The paramet
b and h play the role of inverse temperature and exter
magnetic field, respectively, as discussed above. Note
for large uhu,sn(x)5sgn(h) with high probability, while for
large positiveb,sn(x)5sgn@(yK(x2y)sn21(y)1h# with high
probability.

We say that a probability measurer~s! on the configura-
tion spaceV is stationary for the PCA if and only if it
remains invariant under the dynamics, i.e.,
(sPL(hus)r(s)5r(h). By the general theory of Markov
processes there exists, for anyb, h, andL, a unique station-
ary measurenL

b,h for the PCA. We say that the PCA isre-
versiblewith respect to a measurer iff

PL~hus!r~s!5PL~suh!r~h!, ;s,hPV. ~3!
e-
g.
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Summing Eq.~3! over s shows that anyr satisfying Eq.~3!
is stationary for the PCA; the opposite need of course no
true. It is, however, straightforward to check that ifK(z)
5K(2z) then the process~2! is reversible with respect to
the measure

nL
b,h~s!5Z21 )

xPL
ebhs~x! coshFbS (

y
K~x2y!s~y!1hD G ,

~4!

whereZ is a normalization constant. To see this one sim
notes thatpx@h(x)us# can be written as

px@h~x!us#5
1

2

exp@bhh~x!1b(yK~x2y!h~x!s~y!#

coshb@(yK~x2y!s~y!1h#
.

~5!

The measure~4! must of course be the unique stationa
measure referred to above. From Eq.~4! it is clear that
nL

b,h(s) is a Gibbs measure for a HamiltonianH(b,h) with
~generally many spin! interactions of finite range, which by
our assumptions are independent ofL:

H~b,h!~s!52bh(
x

s~x!

2(
x

lnFcoshbS (
y

K~x2y!s~y!1hD G .
~6!

Hence taking the limitL↗Zd yields a Gibbs measurenb,h

for H that is stationary for the PCA onZd, defined by the
natural extension of the Markov process~2! to Zd.

The stationary measures for the infinite volume PCA ne
of course no longer be unique. It is known in general, ho
ever, that if one stationary translation invariant~or periodic!
measure is Gibbsian, then all such measures are Gibbsia
the same Hamiltonian@18#. Hence to find all translation in-
variant stationary states of our PCA we need only investig
translation invariant Gibbs states forH(b,h). Such an inves-
tigation begins with the ground states of the Hamiltonia
For the model considered here it is easy to see from Eq.~6!
that if K(z)>0 for all z, and if the set ofK(z) that are
nonzero is not chosen in a very special way, then forh50
there are exactly two ground states ofH(b,h), 11I , in
which s(x)51 for all x, and21I , in which s(x)521 for
all x, while for hÞ0 there is only one ground state. It the
follows from the Pirogov-Sinai theory@19# that ford>2 and
b sufficiently large there will be in general two extrem
translation invariant Gibbs measures forh50 and a unique
such measure forhÞ0. By the argument above, the sam
conclusion holds for stationary states of the infinite volum
PCA. We are thus in exactly the same setup as in the fam
ferromagnetic Ising model. We remark that although we
not dealing here with pair interactions, or even exclusiv
ferromagnetic interactions, it is easy to see that the meas
~4! satisfy both the FKG@20# and GKS@21# inequalities.

We may now pose the paradigm question of metastabi
if we prepare the system in the starting configuration21I and
take h to be small and positive, how quickly and in wh
manner does the PCA reach its stationary measure? We
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to answer this question in the limit ofb→`, with L andh
fixed, in which the stationary state is11I , and hence may
formulate the first part of the problem as that of estimat
the first hitting timet115 inf$n>0:sn511I%, in the limit
b→`, when the system is prepared ins0521I . To answer
the second part of the question, we need to describe the
that the system follows to reach11I ; typically, such a path
will involve the necessity of passing through one of a sm
number of critical configurations.

As in the case of continuous~or serial! dynamics, the first
problem is to understand the behavior of the ‘‘stable’’ co
figurations, that is, to estimate the probability that a sta
configuration will grow or shrink. Rather than discussing th
problem in general terms, we shall now focus on a spec
model.

III. A SPECIAL MODEL

For the rest of this paper we will focus on one spec
model from among those specified by~1!: the two-
dimensional model (d52) with K(z)51 for zPA0 and
K(z)50 otherwise, whereA05$0,6e1 ,6e2% is the set con-
sisting of the origin and its four nearest neighbors. Thus
probability distribution of the spinsn(x) is determined by
the spins at timen21 at the five sites in a cross centered
x. According to Eq.~4!, the stationary measurevL

b,h of this
system will then be

nL
b,h~s!5Z21~b;L!

3expS 2 (
xPL

Ux~s;b,h!1bh (
xPL

sxD , ~7!

whereUx(s;b,h)5U0(t2xs;b,h) with tx the shift opera-
tor ~with periodic boundary conditions onL! and

U0~s;b,h!52 (
A,A0

JuAu~b,h!s~A!

52 ln coshFb (
yPA0

s~y!1bhG , ~8!

with s(A)5PyPAs(y) for any A,L. The six coefficients
JuAu(b,h) are determined by the six values which t
(yPA0

s(y) can take. Forh50 only even values ofuAu occur,
and we find

U0~s;b,0!52J0~b,0!2J2~b,0! (
$x,y%,A0

sxsy

2J4~b,0! (
$x,y,z,w%,A0

s~x!s~y!s~z!s~w!,

~9!

with

J0~b,0!5 1
16 ln@~cosh 5b!~cosh 3b!5~coshb!10#>0,

~10!

J2~b,0!5 1
16 ln@~cosh 5b!~cosh 3b!/~coshb!2#>0,

~11!
g
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J4~b,0!5 1
16 ln@~cosh 5b!~coshb!2/~cosh 3b!3#<0.

~12!

The pair interactions are thus ferromagnetic while the fo
spin interactions are not, so the usual conditions for G
inequalities are not satisfied.

IV. TIME EVOLUTION

We shall first give a heuristic argument showing that t
important configurations for exiting from the metastable st
in the PCA are, as for the usual Glauber dynamics, isola
rectangles of pluses of minimum width two. We shall th
describe, again on a heuristic level, the growth and shrink
of one such rectangle. We find a critical valuel * (h), for h
,1, for the lengthl of the smaller side of the rectangle suc
that, in the limit b→`, all rectangles withl , l * (h) will
shrink to zero@except for some special values ofh, for which
the condition isl , l * (h)21] while those withl> l * (h) will
grow, resulting in an escape from the metastable state.

Let us begin by comparing Glauber dynamics—realiz
via the metropolis algorithm, as is usual in questions
metastability—with the PCA dynamics considered above,
cusing on differences which are relevant whenh is small and
b is very large. The former, for a spin system with Ham
tonian H̃5H̃(h) and inverse temperatureb, proceeds by
spin flips at single sites, with the ratec(x;s) at site x in
configurations given by

c~x;s!5H 1, if H̃~sx!<H̃~s!,

expb@2H̃~sx!1H̃~s!#, if H̃~sx!.H̃~s!,

~13!

wheresx is the configuration obtained froms by flipping the
spin at sitex:

sx~y!5 H 2s~y!, for y5x,
s~y!, for yÞx. ~14!

Sincec(x;s) depends only onb@H̃(sx)2H̃(s)# and is in-
dependent ofb if H̃(sx)<H̃(s), the dynamical landscape i
determined entirely by the function (bH)(s), and thestable
configurations, i.e., those invariant under the dynamics in t
limit b→`, are the local minima ofH̃.

In contrast, the PCA dynamics permits transitions fro
one configuration to any other in a single updating; we w
see, however, that this distinction will play only a minor ro
in the analysis of metastability. Recall that the probability
a transition froms to another configurationh in one time
step is given by the product of the probabilities of spin fli
at sites wheres and h differ with the probabilities of non-
flips at sites where they agree. Probabilities of all possi
single site flips are shown in Fig. 1; it is clear that, at largeb,
certain flips are almost sure to take place, while all oth
have exponentially small probability. Thus from an arbitra
initial condition we expect a very rapid evolution to a stab
configuration, with further change taking place on an exp
nentially slow time scale, and involving primarily flips o
single spins—in fact, on six different exponential tim
scales, well separated forh,1 and very largeb, correspond-
ing to the six slow spin flip processes of Fig. 1. The par
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FIG. 1. Probabilities for the flip of the centra
spin for all possible configurations in the five
spin neighborhood.
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lelism of the dynamics is of relevance during the first, rap
phase, but the analysis of metastability involves the sl
essentially serial, second phase—although in certain c
we must consider the effect of a small number of unlike
single-site events occurring simultaneously.

A second difference is that although, in the PCA dyna
ics, transitions that lower the energy are generally favo
over those that do not, the probability of a transition froms
to h is not specified entirely by the energy differen
H(h;b,h)2H(s;b,h). In particular, for the specific mode
introduced in Sec. III, the single-step probability of flipping
spin that agrees with two of its nearest neighbors is expon
tially small, even when such a flip is~energetically! favored
by the magnetic field, and hence there are pairs of confi
rationss andh which differ at a single site but are such th
the probability of jumping between them~in either direction!
goes to zero asb→`. This is illustrated in Fig. 1. Conse
quently there are many more stable configurations for
PCA than for the Glauber dynamics. In fact it is easy to s
that any configuration in which the value of the spin at ev
site agrees with that of at least two of its neighboring site
stable.

Despite the large number of stable configurations, ho
ever, it is rectangular droplets that are important for e
from the metastable state, due to the effect of the most ra
of the ‘‘slow’’ single flip processes of Fig. 1. We formaliz
this as follows. LetV̂ be the set of configurations in whic
every plus spin agrees with at least two of its nearest ne
bors, and defineT:V̂→V̂ so thatTs is the configuration
obtained froms by flipping all the minus spins with at leas
two pluses among their nearest neighbors. For anysPV̂ the
sequence of configurationsTks, k50,1, . . . , isnondecreas-
ing, in the sense that (Tk11s)(x)>(Tks)(x) for all x, and
hence must reach a fixed points* , in which the set of plus
spins forms well separated rectangles~or bands around the
torus! inside the sea of minuses. Moreover, if we takes as
the initial conditions0 of the PCA dynamics, and letEs be
the event that for somen, sn5s* and the sequence (sm) is
increasing for 0<m<n, then it is clear from Fig. 1 that

lim
b→`

ProbEs51, ~15!
,
,
es

-
d

n-

u-

e
e
y
is

-
it
id

h-

and that the time to reachs* is typically of order exp 2b(1
2h). Thus the path for escape from metastability must p
through configurations in which all the pluses are ins
well-separated rectangles.

We do not attempt to discuss the most general situa
but instead consider the fate of a single rectangle; we ex
that, as for Glauber dynamics@6#, this is the key element in
an analysis of metastability. Let us consider, then, a confi
ration h for which all spins inside a rectangle of sidesl and
m are up and all other spins are down, and suppose for d
niteness thatl<m. We will say that such anl 3m droplet is
supercritical if, starting from h, the system will reach the
configuration11I before it reaches21I , with probability that
approaches 1 in the limitb→`; the droplet issubcritical if
the reverse is true. We will argue heuristically that ifl
,2/h then the droplet is subcritical and ifl .2/h the droplet
is supercritical, while if 2/h is an integer andl 52/h then the
droplet may either shrink or grow. Thecritical length lh* is
the smallest integer such that the droplet is supercriticall
> l h* ; thus l h* 5 b2/hc11.

A very rough estimate ofl h* may be based on energ
considerations, with the assumption that if the system st
from a rectangular droplet then the next droplet reached
be one with lower energy. For example, ifh contains anl
3 l droplet ande( l )5H(h), one may approximatee( l ) at
very largeb by writing ln coshbx'buxu in Eq. ~8!. In this
approximation,e( l ) is a parabola, the maximum of which i
achieved atl 52/h, supporting the resultl h* 5 b2/hc11 de-
scribed above.

For a correct calculation of the critical length we mu
analyze in detail the mechanisms of growth and shrinkag
a rectangular droplet; these are in general similar to those
Glauber dynamics@6#, although the details are different. W
will comment below on the possibilities of making the fo
lowing heuristic discussion rigorous.

Consider first growth. From Fig. 1 it is clear that a sing
plus protuberance on one of the four sides of the rectang
is not stable; growth proceeds through the formation o
double protuberance, which then grows ‘‘quickly’’@i.e., on
the time scale exp 2b(12h)# to complete the additional side
The parallel dynamics permits the double protuberance
form in one time step, as shown in Fig. 2~a!; the typical time
for this process is



iv
e
f
t t
w
-

is

-

k-
ig

bl
s
th
-
s
h
r o

o

nd

e

e at

g
with
f

t-

at

or-
c. 2

be-
d

uat-
ay
h as
lso
and

a-

of

PRE 59 3939CRITICAL DROPLETS IN METASTABLE STATES OF . . .
tdouble;e4b~32h!. ~16!

Alternatively, the protuberance can grow in two consecut
time steps, as shown in Fig. 2~b!; the parallel character of th
dynamics enters here as well, since after formation o
single protuberance at the first step there must occur, a
second step, both the persistence of this protuberance,
probability exp@22b(12h)#, and the flip of a minus spin ad
jacent to the protuberance, also with probability exp@22b(1
2h)# ~see Fig. 1!; the typical time for this growth process
thus

~17!

Clearly tsingle!tdouble for b large and hence the most effi
cient growth mechanism is the two-step one.

Again from Fig. 1 it is clear that the most efficient shrin
ing mechanism is the usual corner erosion, shown in F
2~c!; the shrinking is performed via a sequence of sta
configurations. We estimate the time needed for the los
one of the shorter sides of the rectangle, which requires
erosion ofl 21 sites~after which the remaining single pro
tuberance vanishes rapidly!. Whenb is large, such a proces
will typically occur without backtracking. The rate at whic
the entire process occurs is thus estimated as the rate fo
erosion, exp22b(11h), times the probability thatl 22 further
erosions occur within the lifetime exp2b(12h) of a stable con-
figuration, which is of order@exp22b(11h) exp2b(12h)#l22. Thus
the shrinking time is estimated as

tshrink;e2b~11h!3Fe2b~11h!

e2b~12h!G l 22

. ~18!

The estimate of the shrinking timetshrink can be supported
by considering a random walk that models what happens
one edge of the droplet. Consider a Markov chainXt , t
50,1,2, . . . , taking values in the nonnegative integers a
with transition probabilities

FIG. 2. Growth and shrinking mechanisms:~a! double protuber-
ance growth mechanism,~b! single protuberance growth mech
nism, ~c! corner erosion.
e

a
he
ith

.
e
of
e

ne

n

P~k,l !55
1

2
e2bc if l 5k11,

1

2
e2bb if l 5k21,

12
1

2
e2bc2

1

2
e2bb if l 5k,

0, otherwise,

and

P~0,1!5 1
2 e2bc, P~0,0!512 1

2 e2bc,

where k>1, c.b.0, andb.0. This chain, withb52(1
2h) andc52(11h), is an approximate description of th
behavior of the edge of a droplet~see Fig. 3!, if one thinks of
Xt as representing the number of minus spins on this edg
time t. In order to estimatetshrink one should calculate the
typical time to seel 21 minus spins on the edge, startin
from zero minus spins. Such an estimate, which agrees
Eq. ~18!, is provided by the following lemma, the proof o
which is parallel to that of lemma 1 of@6#.

Lemma 4.1. For k>1, define the hitting timetk
0 for the

Markov chainXt with X050 by

tk
05

def

$t>1:Xt5k%. ~19!

Then for any«.0,

P~ebck2bb~k21!2b«,tk
0,ebck2bb~k21!1b«! ——→

b→`

1.
~20!

To complete the derivation of the critical length for rec
angular droplets we compare Eqs.~17! and~18!: growth oc-
curs with probability one in the zero temperature limit, th
is, l> l h* , if lim b→`tsingle/tshrink50. This again leads to

l h* 5 b2hc11. ~21!

We believe that the above argument could be made rig
ous along the lines of the corresponding arguments in Se
of @6#. The main complicating factor appears to be that,
cause the growth timetsingle is so large, processes beyon
simple corner erosion must be accounted for when eval
ing the shrinking time. For example, several corners m
disappear in one step; more complicated processes, suc
the two-step shrinkage by two sites shown in Fig. 4, are a
relevant. These modifications appear to be technical only

FIG. 3. Approximate description of the behavior of the edge
a droplet.
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should not affect the estimate~18! of tshrink, but we have not
carried out a complete analysis.

V. MONTE CARLO RESULTS

The critical lengthl h* introduced in the previous sectio
characterizes the behavior of the system in the limitb→`.
In this section we define a critical lengthl b,h* at finite b and
describe the results of Monte Carlo simulations evaluat
l b,h* numerically for several values ofb andh. We find that
when b is large enough the resulting estimates ofl b,h* are
close the theoretical estimate ofl h* given in the previous
section.

Let pb,h( l ) denote the probability that a square droplet
side l grows and covers the whole lattice, that is, that
evolving from this initial configuration the system reach
the state11I before the state21I . Clearly pb,h( l ) is a non-
decreasing function ofl with pb,h(0)50 andpb,h(L)51, so
that the differences

db,h~ l !5pb,h~ l !2pb,h~ l 21! ~22!

form a normalized probability distribution. In the limitb
→` ~assuming for simplicity that 2/h is not an integer!, pb,h
reduces to a step function,

p`,h~ l !5H 1, if l> l h* ,

0, if l , l h* ,
~23!

anddb,h( l ) to a unit mass on the critical lengthl h* . At finite
temperature, then, we define the critical length to be
mean of the distributiondb,h :

l b,h* 5(
l

ldb,h~ l !. ~24!

From ~23! it follows that l `,h* 5 l h* . We note that this ap-
proach in the numerical estimate of the critical length is d
ferent from that used in@8#.

In the above discussion we have suppressed the de
dence ofpb,h , db,h , and l b,h* on the lattice sizeL, since for
largeb andL we expectl b,h* as defined by~24! to be essen-
tially independent ofL.

We have carried out numerical experiments to estim
the functionpb,h( l ), and hencel b,h* , for b50.9,1.1,1.3 and
h50.05,0.1,0.2; we variedl over the range of values in
which pb,h( l ) changes rapidly and madeN5100 runs for
each value ofl. For each run, we first prepared our system
a starting configuration characterized by a single squ
droplet of plus spins of sizel, placed in a lattice the sizeL of
which was chosen large enough to avoid boundary effe
We then followed the evolution of the system and decid
by means of lower and upper cutoffs on the total syst
magnetization, whether the droplet would ultimately grow

FIG. 4. One mechanism occurring on a time scale faster t
tsingle and hence relevant for complete treatment oftshrink.
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shrink. We also introduced a cutoff on the total length
each run, chosen as a function ofb so that for most runs the
fate of the droplet was determined before the cutoff w
reached; in the caseb51.3, the highest value ofb we have
considered, this cutoff was 200 000 iterations. Letti
Gb,h( l ) denote the number of times that the droplet grew a
Sb,h( l ) the number of times that it shrank, and assuming t
the fraction of the remainingN2Gb,h2Sb,h cases~in which
we did not determine the behavior! in which the droplet
would have grown if we had waited long enough is the sa
as for the cases in which the behavior was determined,
are led to the estimate

pb,h~ l !5
Gb,h~ l !

Gb,h~ l !1Sb,h~ l !
. ~25!

From the estimated values ofpb,h( l ) we computed the
finite-temperature critical length, via Eq.~24!, and the stan-
dard deviation of the distributiondb,h ; the values are re-
corded in Table I. The results are in very good agreem
with our theoretical prediction: when the temperature is lo
ered, the numerical measure of the critical length tends to
zero-temperature theoretical predictionl h* 5 b2/hc11. We did
not consider higher values ofb because too long runs woul
have been needed, but the values we have considered
to be sufficient to see the zero temperature limit behav
Note that the standard deviation of the distributiondb,h( l )
decreases whenb is increased. This good behavior is cleare
in the case of small external magnetic field; presumab
higher values ofb should be considered at higherh to ap-
proach the limiting behavior.

We observed that the typical time for growth of the initi
square depended strongly onb andh, but not onl; while the
typical shrinking time increase sensibly whenl is increased.
This is qualitatively in agreement with theoretical estima
~17! and ~18!.

VI. CONCLUSIONS

In this paper we have studied the problem of metasta
states in probabilistic cellular automata, viewing the latter
the simplest instance of models evolving under parallel
namics. All detailed work has been focused on a particu
case: a two-dimensional model on the square lattice in wh
the probability of a spin flip at sitex depends only on the
total magnetization of the set of five spins in a cross cente
at x @see Eq.~1!#.

We conclude that the general pattern of analysis wh
has been used for similar models evolving under Glau

n

TABLE I. Estimates of the critical lengthl b,h* , with their stan-
dard deviations, obtained from Monte Carlo simulations via
procedure described in Sec. V. Forb5` we give l h* as obtained
from Eq. ~21!.

b
0.9 1.1 1.3 `

0.05 38.5361.60 40.1661.50 40.5861.35 41
h 0.1 19.7661.13 20.2961.20 20.3660.92 21

0.2 9.9660.20 9.9660.20 9.9860.14 11
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dynamics applies here as well, since events in which
system makes a one-step transition to a configuration sig
cantly different from the current one can be neglected in
low-temperature limit. In particular, we argue that the path
escape from metastability passes through a critical recta
lar droplet. On the other hand, the parallel nature of the
namics does influence the details of the analysis of the
cape time and, in particular, adds enough complication
make a rigorous analysis more difficult than in the Glau
case.

For the model in question we have shown, through h
ristic arguments and Monte Carlo simulations, that the cr
cal length of a rectangular droplet isl h* 5 b2/hc11. Our the-
oretical prediction is valid only in the limit of zero
temperature, but our simulations confirm estimates clos
the theoretical ones even at finite temperature.

It is natural to ask whether escape from the metasta
state is facilitated or hindered by the use of parallel~as op-
posed to serial! dynamics. It is not clear that this questio
has a universal answer, but as a preliminary approach
may ask what would happen in the model of this paper
serial evolution rule were adopted, so that at each time
one spin is chosen at random, with uniform probability, a
then updated with probability given by Eq.~1!.

As mentioned in Sec. IV, we used the parallel characte
the dynamics only in the estimate oftsingle, so that to esti-
a-
e
la

ta

l.

an
e
fi-
e
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u-
-
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to
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to
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e
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f

mate the critical length in the serial case one should comp
the shrinking time~18! with a new growing timetgrowth

;exp@2b(32h)12b(12h)#, obtained by noting that in the
second step of the double protuberance growth the pe
tence probability of the single protuberance need not
taken into account. Comparison of these two times sho
that the critical length in the serial case is given, forh very
small, byb3/2hc11. Thus, for these models, the parallel ru
leads to a larger critical droplet and a slower exit from t
metastable phase.
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